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ABSTRACT 

Water is wasted significantly in traditional irrigation systems. Not only is an intelligent irrigation system 
required to optimize water use, but it is also required to increase crop yield. The Internet of Things (IoT) and 
Machine Learning (ML) have enabled the development of intelligent systems capable of achieving these 
goals with minimal human intervention. This paper proposes an IoT-enabled and ML-trained irrigation 
system to optimize water usage while requiring minimal user intervention. IoT devices are used to collect 
soil and environmental data. In real time, this data is sent to and stored on a cloud server. From historical 
field data collected at the agricultural research site over a ten-year period, ML algorithms are used to 
generate a model. This model uses IoT sensor data to make real-time recommendations about the state of an 
agricultural field, such as the need for watering. Both simulation and prototype implementations are used to 
compare the performance of the proposed system to similar previous works. In addition to the features made 
available to users via a cloud platform called Thing Speak, the proposed system made better use of resources 
such as water. Our system reduced Garlic's Crop Water Requirement (CWR) by 6.45% and 6.72%, 
respectively, during the Initial and Development stages. The system can also predict the type of crop that 
should be planted in the current year based on the data collected. Longer-term agricultural field data would 
provide more insight into the area if it was analyzed with more performance evaluation parameters. 

Keywords: Agricultural Automation, Internet of Things Based Systems, Machine Learning Techniques, 
Prototype Implementation, Simulation Modeling, Smart and Intelligent Irrigation Systems.  
 
INTRODUCTION 

Agriculture, without a doubt, has the potential to 
contribute to industrialization by providing raw 
materials for industries, bringing foreign exchange 
for the country, securing food on the plate for 
families. That is particularly true for developing 
countries like Ethiopia where agriculture is the 
livelihood of the majority (Vanderheiden, 2015). 
Ethiopia's economy is mostly centered on 
subsistence agriculture, which contributes for 50% 
of the country's GDP and employs approximately 
85% of the workforce. According to World Bank 
(Farooq et al., 2019), in 2018 Ethiopia has around 
16.187 million hectare of arable land with a wide 
range of weather possibilities. By 2050, the world's 

population is predicted to reach about 10 billion. 
That is 3.4 billion extra mouths to feed. Besides, 
global food demand is expected to rise as high as 
by 98%. This necessitates that agriculture must 
improve production and yields of products (Gebre-
Selassie & Bekele, 2012). This demands the use of 
technological solutions to optimize agricultural 
resource usage.  At places where agricultural 
production merely depends on seasonal rainfall, 
like Ethiopia, it has become increasingly erratic 
and unreliable due to global climate change and 
man-made causes (Awulachew et al., 2011; 
Welteji, 2018). Rapid developments in crop 
production technologies are required to keep up 
with the steady rise in food consumption. In 
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developing countries, food insecurity is a big issue. 
In Ethiopia, where the economy is mostly built on 
agriculture, the use of technology to increase yields 
is a major requirement (FAO, 2021). 

Irrigation systems have been under pressure to 
produce more with lower supplies of water. 
Various innovative practices can bring economic 
advantages while reducing environmental burdens 
such as water abstraction, energy use, pollutants, 
among others by using technology (Risheh, 2020; 
Morin & Orsini, 2020). 

Therefore, in this work recent advancements in 
Internet of Things (IoTs) and Machine Learning 
(M)L algorithms are used to use historical and real-
time weather data to predict the need of water and 
fertilizers and control the same remotely.   

Here, relevant works since 2017 are collected on 
notable research databases, see Table 1, using 
keywords like “smart irrigation”, “intelligent 
irrigation”, “IoT based irrigation system”, “ML 
based irrigation system”, and “smart and intelligent 
irrigation system”.  

As shown in Table 2, the main research gaps 
identified include, but are not limited to: While 
some works attempted to use ML techniques and 
sensors, they only focused on data collection and 
prediction. There is no classification or decision-
making. Furthermore, none of them used a 
remotely accessible platform to make decisions 
like watering. It is also uncommon to come across 
a simulation study of a smart and intelligent 
agriculture system that is supported by a prototype 
implementation. 

The majority of irrigation systems in Ethiopia are 
operated manually (Zerssa, 2021). The following 
are the most serious agricultural problems during 
crop production both locally and globally based on 
(Kassa, 2020): Nutrient imbalance, Water-logging, 
Acidification, Contamination, Erosion, 
Salinization; Water wastage related to drainage, 
outflow, inflow and evaporation; Crop yields are 
reduced due to non-uniform availability of 
moisture; The amount of labor used in manual 
irrigation system is higher. 

These points demonstrate the importance of 
monitoring the levels of nutrients, water, moisture, 
labor, and contextual knowledge in the 
administration of a successful agricultural system. 
However, now is the time for technology to take 
over such activities by automating with fewer 
resources to extract knowledge and aid in better 
decision making. As a result, the primary goal of 
this research is to use ML algorithms to design a 
model based on historical data and IoTs to collect 
real-time data to remotely monitor and control 
agricultural fields at any time. With less human 
intervention, this is expected to improve water 
usage, nutrient imbalance, and other aspects. 

MATERIALS AND METHODS 

In this research work both simulation study and 
prototype implementation are used. A simplified 
version of the methodology used in this work is 
depicted in Fig. 1.  

Description of the Study Area:  

The Debre Zeit Agricultural Research Center, 
located in the Oromia Regional State in the East 

 

Fig. 1: Map of the Study Area 
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Shoa Zone, is where historical data is collected and 
field experiments are carried out. Debre Zeit, as 
depicted in Fig. 1, is a small town located 
approximately 42 kilometers east of Addis Ababa. 
The annual mean rainfall in the area is 
approximately 810.3 mm, with a bimodal trend and 
medium yearly variability (Zerssa, 2021). 

Seasonal fluctuations and atmospheric pressure 

systems create four distinct seasons in Ethiopia: 
Kiremt/Meher or summer (June-August), Tsedey 
or spring (September-November), Bega or winter 
(December-February), Belg or autumn (September-
October) (March to May) (Kumari & Yadav, 2018; 
Yimam et al., 2021). Around 76 percent of the 
area's total rainfall falls during the Kiremt or rainy 
season, 15% during the Belg season, and the 

Table 1: Summary of Research Databases Where Articles are Retrieved 

Research 
Database 

Search String Used Date 
Accessed 

Filter Applied Result Remark 

IEEE 
Xplore 

Smart irrigation April-May 
2022 

Conference Proceedings 90 25 are applicable 

Science 
Direct 

Smart, IoT & ML in 
irrigation system 

April-May 
2022 

Journals 65 
 

18 are applicable 

Scopus Smart, IoT & ML in 
irrigation system 

April-May 
2022 

 

Journals and  Conference 
Proceedings 

35 10 are applicable 

Web of 
Science 

Smart irrigation 
systems 

April-May 
2022 

Journals 20 3 are applicable 

Table 2: Technologies Used in Recent Related Works 
 

Author 
Technology Used Features Implemented 

Central 
Controller 

IoTs or Sensors AI or/and ML 
Algorithm 

Data 
Collected 

Monitoring & 
Controlling  

(Madushanki et al., 
2019) 

Raspberry pi 
and Arduino 

Rain and soil 
Moisture sensor 

Neural network Soil moisture 
and rain  

Predict the 
future of soil 
moisture. 

(Najeeb & 
Kamalakkannan, 
2022) 

Raspberry pi 
 

Soil moisture, 
Humidity & 
temperature 

No Humidity, 
temperature, 
& 
Soil moisture 

Management of 
Water 

(Chowdary, 2019) RFID 
PCA 

pH and 
Temperature 

sensors 

Linear 
regression & 
decision tree 

Soil nutrient 
level, 
temperature 
of atmosphere 

Soil 
Nutrient 
Degradation 
Level. 

(Arvind et al., 2017) NodeMCU Soil Moisture, 
pH sensor and 

PIR sensor 

No Soil moisture 
and pH of the 
soil  

Watering the 
field based on 
the 
threshold value. 

(Bolfe et al., 2020) ZigBee Soil moisture, 
Temperature & 

Water level 

K-means 
clustering 
algorithm 

System 
analyses 
weather 
reports. 

Control pests 
Weather    
forecasting 

(Fraga-Lamas et al., 
2020) 

ZigBee 
Raspberry Pi 

Soil moisture & 
Humidity sensor 

Random Forest Soil moisture 
Nutrient  

Crop 
management 
Nutrient 
Detection 

(Pooja et al, 2017) LoRa 
technology 

Water level sensor No  Optimal time 
irrigate and 
amount of 
water  

Management of 
Water. 

(Campoverde et al., 
2021) 

Wi-Fi 
Raspberry Pi 

 

Temperature, soil 
moisture and light 

sensor 

MQTT protocol Humidity, 
temperature, 
soil 
moisture & 
light intensity 

Weather 
monitoring and 
precision 
farming. 

MQTT - Message Queuing Telemetry Transport; RFID – Radio Frequency Identification; PCA - Principal 
Component Analysis; LoRa - Long Range Radio; PIR - Passive InfraRed. 
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remainder during the Bega or dry season, 
necessitating irrigation. (Kumari & Yadav, 2018; 
Yimam et al., 2021). 

Data Collection: 

 In this research work, data has been collected 
using both primary and secondary sources.  

Primary Data: The primary data is collected from 
various field sensors in order to capture the 
instantaneous environmental data of soil moisture, 
temperature, pH, and rain. To collect primary data 
from the 1m2 research areas, the MH Sensor Series 
for soil moisture, the LM35 sensor series for 
temperature, the pH meter v.1.1, and the YL-83 for 

 

Fig. 2: Data preprocessing steps 

 
Fig. 3: Proposed System Architecture 
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rain are used. The data was collected over three 
months, from November and December 2021 to 
January 2022. The total data size was 1657 rows 
by 4 columns, with the columns representing 
rainfall, temperature, pH, and moisture. 

Secondary Data: The secondary data used in this 
work are obtained from Debre Zeit Agriculture 
research center (DZARC).  Document analysis 
such as archives and reports, filed visits, and face-
to-face interviews with agronomists and 
researchers are among the data collection 
techniques used. 

Furthermore, desk research was extensively used to 
gain access to published documents relevant to the 
research topic and research area. The overall data 
collected includes ten-year weather data, including 
rain, humidity, temperature, and moisture. 

The data preprocessing steps used in this work are 
depicted in Fig. 2. 

Simulation Modeling and Analysis of Results:  

Simulation modeling and analysis has been 
conducted using Proteus 8.10 Professional, python, 
ThingSpeak and Matlab.  Proteus is used to design 
and simulate the proposed system. Python is used 
to write the different features of the simulation, and 
ThingSpeak is IoT based cloud platform that stores 
and analyzes the various data collected, and finally, 
displays the overall result. It uses Matlab for data 
analysis and presentation.   

Prototype Implementation and Analysis: 

During the prototype implementation, Raspberry Pi 
3 is used as the central controller, four sensors to 
monitor moisture, temperature, pH, and Rain, and 
various modules like GSM module to send data to 
the user/farmer, display module for local 
visualization, analog to digital converter 
(ADC1115), motor drive are used.  

Comparative Analysis of Results:  

Finally, both the results obtained from simulation 
and prototype implementations are comparatively 
analyzed against the state-of-the-art to showcase 
the contributions made and open issues to be 
workout in the future 

RESULTS  

The Proposed Smart and Intelligent Irrigation 
System (SI2S):  

This study suggests an IoT-enabled and ML-
trained irrigation system for optimal water usage 
with minimal human intervention. IoT sensors are 
used in agriculture to collect real-time soil and 
environmental data. The data is sent to and stored 
in a cloud server, which analyzes it and makes 
irrigation/watering and soil nutrient 
recommendations to the farmer. As a result, a 

smart and intelligent irrigation system with a lower 
total cost of ownership that can be used in a variety 
of application scenarios is being developed. 

 System Architecture:  

Fig. 3 depicts the proposed solution's system block 
diagram. It depicts the three main elements of the 
proposed system. The first type of IoT sensor 
collects environmental data such as soil moisture, 
temperature, pH, and rain. The second component 
is the microcontroller module, which integrates and 
analyzes real-time data collected from various 
sensors with historical data stored in the cloud to 
make various decisions. The third component is the 
cloud system, which stores historical data as well 
as data collected from various sensors. The ML 
model is stored on a Google cloud server, allowing 
for further communication with the user/farmer. 

Simulation Modeling and Implementation: 

For prediction and classification, we used two 
different ML algorithms. In smart agriculture 
research, the most commonly used algorithms for 
prediction and classification, respectively, are 
linear regression and decision tree. (Abioye et al., 
2022; Jahanavi & Sushma, 2020; Klompenburg et 
al., 2020; Maulud & Abdulazeez, 2020; Rashid et 
al., 2021; Rayhana et al., 2020). 

Prediction Algorithms Used:  

Linear Regression is used in our work for 
prediction based on the recommendations of the 
aforementioned researchers. According to the 
researchers, Linear Regression is the best ML 
algorithm for agricultural systems. This model is 
used in our work to predict crop production based 
on historical data and current field sensor data. It is 
used to determine whether irrigation and nutrients 
are required. Following equation that describes the 
linear regression model (Yimam et al., 2021). 

                     ݁ + ݊ܺ ݊ߚ + … + 2ܺ 2ߚ + 1ܺ 1ߚ + ܽ = ܻ

Where: 

Y = either a dependent or a response variable. 
X = denotes a predictor or independent variable. 
α = an abbreviation for 'constant'. 
β = estimated coefficient or slope. 
݁ = is the error. 

In this work the above equation is contextualized 
as shown in equation (1). 

 pH * 3ߚ + soil moister * 2ߚ + rainfall * 1ߚ + ܽ = ܻ
 temperature + ݁               (1) * 3ߚ +

Classification Algorithm Used:  

Decision trees are intended to mimic human 
decision-making abilities (Neina, 2019). The 
fallowing decision tree algorithm is used in this 
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work to classify the research area's historical 
weather data.  

Step 1: Start with the root node, which holds the 
entire dataset.  

Step 2: Using the Attribute Selection Measure 
(ASM), find the best attribute in the dataset.  

Step 3: Subdivide the data into subsets that contain 
the best value the given attribute. 

Step 4: Create the node of the decision tree that has 
the best attribute value. 

Step 5: Create additional decision trees in a 
recursive manner using the subsets of the dataset 
obtained in step 3. 

Continue this process until the nodes can no longer 
be classified, at which point the final node is 
designated as a leaf node. 

As selection criteria, the same recommendation as 
the prediction algorithms was used (Abioye et al., 
2022; Jahanavi & Sushma, 2020; Klompenburg et 
al., 2020; Rashid et al., 2021; Rayhana et al., 
2020). 

Schematics of the Simulation Implementation:  

Fig. 4 depicts the Proteous implementation of the 
proposed system simulation model. It includes a 
Raspberry Pi 3 microcontroller, four sensors, and 
various other components. 

This system uses temperature, pH, moisture, and 
rain sensors to monitor the current weather 
conditions in the agricultural area. The water pump 
motors are activated by a relay module, while the 
GSM module transmits messages to the user's 

phone, the LCD panel displays field data, and the 
analog to digital converter (ADC) converts analog 
signals to digital for the Raspberry Pi. The ADC is 
required because the Raspberry Pi only has digital 
GPIO pins, whereas the moisture, pH, and 
temperature sensors generate analog outputs. The 
ThingSpeak cloud is linked to the Raspberry Pi via 
the Wi-Fi module. 

The Raspberry Pi sends data from the four sensors 
to the cloud, where it is analyzed and saved on the 
ThingSpeak server. Furthermore, the data is 
displayed in real time on the ThingSpeak 
Dashboard. 

Flowchart of the overall implementation: 

When the ML algorithm and field sensor data reach 
the threshold value, the water pump turns on to 
efficiently irrigate the plant until it reaches the 
specified value. 

The soil has enough nutrients when the pH is 
between 5.5 and 7.5 without inclusion. Otherwise, 
the soil lacks nutrients and minerals. 

Fig. 5 depicts the steps that the proposed system 
takes to monitor the agricultural field using 
sensors, push the data to the cloud whenever Wi-Fi 
is available, use ML algorithms to predict whether 
irrigation and/or nutrients are needed, and notify 
the user. Furthermore, whenever the user receives 
notification that the agricultural field requires 
irrigation, the relay can be activated to start the  

Analysis of Simulation Results: 

A) Thing-Speak IoT Simulation Results: 

The simulation's expected outcome is that all 
sensors are properly connected and configured to 

 

Fig. 4: Proteus Simulation Design Schematic Diagram 
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communicate with the Raspberry Pi via Python 
programs. The data is then transmitted to the cloud 
server via a Wi-Fi connection. Finally, as shown in 
Fig. 6, the real-time data is displayed on the Thing 
Speak cloud server platform. 

The data can be remotely monitored from 
anywhere using the Thing Speak Application’s 
Cloud web server. Fig. 6 shows how to monitor the 
field sensors for rain, soil moisture, pH, and 
temperature, as well as the relay status. 

B) Production Model Result:  

This model is used to determine the relationship 
between crop production and field data 

characteristics. This model aids in estimating the 
amount of crop production. We use linear 
regression to determine the relationship between 
production and each of the four parameters (soil 
moisture, temperature, pH, and rain). Fig. 7 depicts 
the output rate with the four parameters. 

Fig. 8 depicts the real-time agricultural field data 
gathered by the four sensors. It also suggests 
irrigating the field based on both historical and 
real-time weather data. Because the system 
recommends irrigation, the user activated the relay 
motor to pump water and irrigate the field, and 
thus the motor status is on. When the moisture 
sensor exceeds the threshold value or rain falls 

 

 
Fig. 5: Flow Chart of the Overall Implementation 
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where both are detected by the sensors, the system 
automatically turns off the motor. 

C) pH Value Prediction Result:  

Soil pH, also known as soil response, is a measure 
of soil acidity or alkalinity. The pH scale runs from 
0 to 14, with 7 indicating neutrality. 

As the amount of hydrogen ions in the soil 
increases, the pH of the soil decreases, making it 
more acidic. From pH 7 to 14, the soil becomes 
more acidic, and from pH 7 to 14, it becomes more 
alkaline or basic (Najeeb & Kamalakkannan, 
2022). 

Soil pH indicates whether or not crops require 
nutrients to maintain the proper pH balance. Fig. 9 
shows typical crops and pH values. 

The pH of the soil is zero, as shown in Fig. 10. 
This alerts the user that the soil is becoming 
increasingly acidic due to a lack of fertilizer and 
minerals. Depending on the crop, appropriate acid 
treatment could be achieved by using the 
appropriate fertilizers. 

Based on historical data, the system can also 
predict and suggest crop types that may provide 
better production, as shown in Fig.11. 

Prototyping of the Smart and Intelligent 
Irrigation System (SI2S): 

 
 

(A) (B) 

  

(C) (D) 

 

(E) 

Fig. 6: Real-Time Data from Field Sensors (A) Temperature, (B) pH, (C) Rain,  
(D) Moisture, and (E) Motor. 
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A smart and intelligent irrigation monitoring and 
control system has been designed using a prototype 
implementation of low-cost field sensors interfaced 
with a Raspberry Pi microcontroller. 

Prototype Model and Components:  

The proposed prototype is built with a variety of 
hardware, software, and platforms. Fig. 12 depicts 
the experimental setup, including the main 
hardware components, their interconnections, and 
interfacing with the microcontroller. 

Moisture, pH, rain, temperature, and humidity are 
all factors to consider. Sensors were installed in the 
field. The sensors send a signal to the Raspberry Pi 
to control and send field data information to the 
cloud server once the soil reaches the desired 
moisture, temperature, and pH level. The cloud-
based ML model processes real-time data using the 
model developed from historical data. The 
ThingSpeak cloud server web application allows 
users to view, monitor, and control data from 
anywhere. 

Weather Data Collection using the Prototype 
System:  

The historical weather data used in this study was 
provided by the Deber Zeit Agricultural Research 
Center. Garlic was chosen for the prototype 
implementation because it is already well-
cultivated in the center and has sufficient historical 
data for the proposed system to compare with. 
According to Table 3 and Fig. 11, the cumulative 
reference evapotranspiration (ET 0) in the research 
center for garlic was 77.5 mm for the initial stage 
and 136.7 mm for the development phase of net 
crop water demand. The cumulative reference 
evapotranspiration (ET 0) was 72.5 mm for the 
starting stage and 127.7 mm for the development 
stage for the interval between planting at the same 
month from the research center practice start and 
the beginning of the irrigation experiment, which is 
November.  

Table 4 and Fig. 14 show the proposed system 
water usage in comparison to the research center 
practice. During the development stage of both the 
proposed system and the research center practice, 
the highest water demand was reported. However, 
the proposed system used less CRW (6.45% and 

Fig. 7: Production Predicted Model 

 

 

Fig. 8: Information Generated based on 
Historical and Real-time Data 

Fig. 9: pH Value Prediction Model Result 
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6.72%, respectively) during the initial and 
development stages. 

DISCUSSION  

When the proposed smart and intelligent irrigation 
system (SI2S) compared with traditional irrigation 
systems, it is more intelligent in that it chooses 
when to irrigate the plant based on real-time data 

from IoT-based field sensors. Moreover, it uses 
ML based prediction and classification models to 
achieve better resource utilization with minimum 
physical intervention. The prediction model, which 
is based on linear regression model, analyzes both 
historical weather data and real-time sensor data to 
recommend whether irrigation is required at that 
specific time. The classification model uses 

 

Fig. 10:  pH Data Generated to Indicate Current Soil Condition 

 
Fig. 11: Crop Prediction Result 

 
Fig. 12: Prototype Implementation of the Proposed Irrigation System 
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decision tree to recommend the type crop to plant 
this season. This is also done using historical 
weather data and current soil data collected from 
the IoT sensors. These approaches not only save 
lots of time it improves resource utilization like 
water and nutrients. The water demand of the crop 
can be monitored via the moisture, temperature 
and rain sensors whereas; the level of soil nutrients 
is monitored based on pH sensor. In traditional 
irrigation systems, there is a waste of resources 
such as water, nutrients, labor, and time 
(Awulachew & Ayana, 2011; Belay & Bewket, 
2013; Lee et al., 2014). To justify this, the 
proposed smart and intelligent irrigation system 
(SI2S) is compared with traditional irrigation 
systems, and with selected and appropriate smart 
irrigation systems previously proposed with 
detailed analysis, in Table 5, Table 6, and Table 7, 
respectively. More specifically, based on the 
results shown in Table 3 and 4 the proposed 
system improved the CWR of Initial and 
Development stages of the selected crop during the 
prototype study, which is Garlic, by 6.45% and 
6.72%, respectively.  

As can be seen in Table 5, traditional systems lack 
much of the means to utilize agricultural resources 
including labor, time, water, and fertilizers, among 
others when compared to the proposed system. 
Primarily, that is why emerging technologies need 
to be adapted to such application domains (Bolfe et 
al., 2020; FAO, 2021). Obviously, the proposed 

system performed better in almost all aspects when 
compared with traditional systems. Apparently, 
that is something expected. Hence, Tables 6 and 7 
compared the proposed system with similar 
systems to get a more critical and realistic 
performance comparisons with related works that 
identified as smart and intelligent (Madushanki, 
2019; Patil & Sachapara, 2017; Rao & Sridhar, 
2018; Rayhana, 2020). 

Table 6, shows selected related works that are 
similar to the proposed work where many lacks the 
automatic controlling of the agricultural field using 
actuators or motors to initiate irrigation, for 
example. In the proposed system the farmer or user 
can monitor the agricultural field being anywhere 
in the world via the online system through her 
smart phone. While doing so she can initiate 
irrigating the plants based on the sensors data that 
indicated the need for water. Moreover, none 
attempted to use ML algorithms to create an AI 
Model that can predict the type of crop that better 
be planted in the area. 

When it comes to Table 7, detailed performance 
comparison is made between the proposed SI2S 
system and the selected related works that are 
claimed smart and intelligent. The proposed model 
is better in some critical aspects like the use of 
both simulation analysis and prototype 
implementation. The prototype implementation is 
made using low cost hardware where it is possible 
to replicate the work for real world 
implementations by low income farmers both in 
rural and urban settings. As long as electric power 
is made available through commercial lines or 
batteries backed by, for example, renewable 
energy sources, then it is possible to deploy it in 
any setting to monitor and control a farming area 
of crops, vegetables, horticulture and fruits.   

In conclusion, this work discusses a smart and 
intelligent irrigation system (SI2S). It is smart 
because the proposed model has four sensors that 
monitor moisture, pH, rain, and temperature of the 
soil. And, it is intelligent because it has ML 
models built using a ten-year historical data of 
Debre Zeit Agricultural Research Center where the 
prototype was deployed for three months. The 
classification model, which is based on decision 
tree algorithm, categorizes the type of crop that 
could better be planted. This model, though trained 
and tested using the historical data uses the real-
time sensors data to further fine tune its 
classification. The prediction model, which is 
based on the linear regression algorithm, suggests 
the need for water/irrigation and nutrients of the 
soil based on both historical and instantaneous 
weather data.          

Though there are many possible extensions, this 
system has improved the CWR of garlic at its 

 
Fig. 13: RCP water demand of Garlic 

 
Fig. 14: Water Demand for Garlic in the 

Proposed System 
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initial and development stages when compared 
with previous works. Moreover, it can be used to 
get suggestions about which crop could be better 
planted in the current season to get better 
production based on the historical and real-time 
data of soil pH and other parameters. Farmers and 
agriculturalists can remotely monitor their fields 
using a computer or mobile device via the cloud 
based web application. The data collected through 
the sensors which is saved in the cloud could be 
used for further research and analysis in numerous 
ways to improve production.  

By doing so, this system avoids physical presence, 
saves time, and improves water usage, among 
other things. Installation is simple, and the amount 
of labor and time required to control the irrigation 
process is minimal. Better performances and 
features are observed from the system when 
compared with similar recent works.  

The following are the study's main contributions: 
First, the proposed system reduced Garlic's Crop 
Water Requirement (CWR) by 6.45% and 6.72%, 
respectively, during the Initial and Development 
stages. Second, it can be used to forecast the type 
of crop that should be planted in the current year 
based on the primary (sensor) and secondary 
(historical) data collected. Third, using mobile 
devices, users/farmers can remotely initiate 
irrigation or watering of crops via the ThingSpeak 
cloud platform. Furthermore, real-time data from 
the sensors can be downloaded and used for further 
analysis and insights. 

This effort can be improved in the future by using 
valves to remotely apply nutrients based on pH 
sensor results. Furthermore, a camera system can 
be used to improve monitoring of the entire 
agricultural field. This research attempted to 
develop agricultural field monitoring and control 
mechanisms that were both generic and specific (to 
garlic). It can also be extended to other crops that 
can be planted in various geographical areas 
throughout the country. Furthermore, crop 
production or yield monitoring and analysis of the 
suggested crop type by the classification model 
would provide us with a better understanding of 
the commonly used technique known as "crop 
rotation." It goes without saying that using longer-
term agricultural field data with more performance 
evaluation parameters could yield better results. 
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